PREDICTIONS OF THE IMPACTS OF THE SEA-LEVEL RISE IN ARGENTINA
Palabras clave:
retroceso costero, erosión de playas, estuarios, inundaciones costeras, ArgentinaResumen
Sea level is rising and it is expected to continue rising as the atmosphere is warming inducing glacier melting. Based on this melting a minimum of 0.4 m of sea level rise (SLR) is expected for the year 2100. Coastal erosion is the more evident consequence of this SLR. At estuarine areas these effects are more difficult to discern. In some areas climate is warming and rains are increasing, and are thought to continue doing so in Buenos Aires; but they are decreasing in Patagonia. Therefore, estuarine areas, freshwater and salt marshes have different responses along the Argentine coast. More important are the effects in urban areas where planners and administrators have systematically disregarded the subject. In low-lying areas as Samborombón Bay the SLR will cause a surface retreat of the salt-fresh water interactions. Therefore, General Lavalle city will be more dependant of the surface freshwater runoff of the Channel 2. Flash floods today can affect the city of San Clemente del Tuyú but the performance of the discharge pipelines depends on the meteorological effects on the tides. Flash floods have also affected coastal cities of the desertic Patagonia: Puerto Madryn and Comodoro Rivadavia have suffered unprecedented floods during recent years. Two models applied to coast evolution in response to SLR. Bruun`s model predicts shore erosion and deposition below the depth where there is no wave action (closure depth). However, in low-lying areas where there is enough sediment availability the onshore migration of bedforms (beaches, cheniers) can occur. Changes in estuarine areas are more difficult to predict. Tidal prisms can increase significantly in microtidal coasts due to SLR, but in macrotidal coasts these increments were not significant. Another effect of the SLR occurs at the hydrogeological interphase between fresh and salt waters. The simulation of these interactions should be carefully estimated considering the groundwater discharge and the climate change effects on the Precipitation.
Referencias
Abram, N., Gattuso, J. P., Prakash, A., Cheng, L., Chidichimo, M. P., Crate, S., Enomoto, H., Garschagen, M., Gruber, N., S. Harper, S., Holland, E., Kudela, R. M., Rice, J., Steffen, K., and von Schuckmann, K. (2019). Framing and context of the report. In: H. O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. M. Weyer (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (pp. 73–129). Cambridge University Press. https://doi.org/10.1017/9781009157964.003
Albouy, E. R., Ruffo, A. G., Giorgi, J. M., and Bastianelli, N. V. (2020). Agua subterránea en la franja medanosa austral del suroeste bonaerense, Argentina. Factores que condicionan su aptitud para consumo humano. Revista Latino-Americana de Hidrogeología, 10, 12–23. https://sedici.unlp.edu.ar/handle/10915/90727
Atkinson, A. L., Baldock. T. E., Birrien, F., Callaghan, D. P., Nielsen, P. Beuzen, T., Turner, I. L., Blenkinsopp, C., and Ranasinghe, R. (2018). Laboratory investigation of the Bruun Rule and beach response to sea level rise. Coastal Engineering 136, 183–202. https://doi.org/10.1016/j.coastaleng.2018.03.003
Aucan, J., Hoeke, R. K., Storlazzi, C. D., Stopa, J., Wandres, M., and Lowe, R. (2018). Waves do not contribute to global sea-level rise. Nature Climate Change 9(2), 2–3. https://doi.org/10.1038/s41558-018-0377-5
Bagheri-Gavkosh, M., Mossa Hosseini, S., Ataie-Ashtiani, B., Sohani, Y., Ebrahimian, H., Morovat, F., and Ashrafi, S. (2021). Land subsidence: A global challenge. Science of the Total Environment 778, 146193. https://doi.org/10.1016/j.scitotenv.2021.146193
Barraza, J. (2025). Un análisis hidrometeorológico de la trágica tormenta de Bahía Blanca, Argentina. Análisis CR2. Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile.
Barros, V. B., Boninsegna, J. A., Camilloni, I. A., Chidiak, M., Magrin, G O., and Rusticucci, M. (2014). Climate change in Argentina: trends, projections, impacts and adaptation. WIREs Climate Change, 6, 151–169. https://doi.org/10.1002/wcc.316
Bernier, N. B., Hemer, M., Mori, N., Appendini, Ch. M., Breivik, P., de Camargo, R., Casas-Prat, M., Duong, T. M., Haigh, I. D., Howard, T., Hernaman, V., Huizy, O., Irish, J. L., Kirezci, E., Kohno, M., Lee; J. W., Mc Innes, K. L., Meyer, E. M. I., Marcos, M., Marsooli, R., Martin Oliva, A., Menendez, M., Moghimi, S., Muis, S., Polton, J. A., Pringle, W. J., Ranasinghe, R., Saillour, T., Smith, G., Getachew Tadesse, M., Swail, V., Tomoya, S., Voukouvalas, E., Wahl, T., Wang, P., Weisse, R., Westerink. J. J., Young, I., and Zhang, U. H. (2024). Storm surges and extreme sea levels: Review, establishment of model intercomparison and coordination of surge climate projection efforts (SurgeMIP). Weather and Climate Extremes, 45, 100689. https://doi.org/10.1016/j.wace.2024.100689
Bilmes, A., Pessacg, N., Alvarez, M. P., Brandizi, L., Cuitiño, J. I., Kaminker, S., Bouza, P. J., Rostagno, C. M., Núñez de la Rosa, D. and Canizzaro, A. (2016). Inundaciones en Puerto Madryn: Relevamiento y diagnóstico del evento del 21 de Enero de 2016 (Informe Técnico). CCT-CONICET-CENPAT.
Boon, J. D. and Mitchell, M. (2015). Nonlinear change in sea level observed at North American tide stations. Journal of Coastal Research, 31(6), 1295–1305. https://doi.org/10.2112/JCOASTRES-D-15-00041.1
Brandani, A., D’Onofrio, E., Schnack, E. J., and Rabassa, J. R. (1985). Comparative analysis of historical mean sea level changes along the Argentine coast. In: J. Rabassa (Ed.), Quaternary of South America and Antarctic Peninsula, 3, 17–25.
Bruun, P. (1962). Sea level rise as a cause of shore erosion. Journal of Waterways and Harbors Division, 88, 117–130. https://doi.org/10.1061/JWHEAU.0000252
Bruun, P. (1988). The Bruun Rule of erosion by sea level rise: a discussion on large-scale two- and three-dimensional usages. Journal of Coastal Research 4, 627–648. https://www.jstor.org/stable/4297466
Carretero, S., Rapaglia, J., Bokuniewicz, H., and Kruse, E. E. (2013). Impact of sea-level rise on saltwater intrusion length into the coastal aquifer, Partido de La Costa, Argentina. Continental Shelf Research, 61–62, 62–70. https://doi.org/10.1016/j.csr.2013.04.029
Carter, R. W. G., Orford, J. D., Forbes, D. L. and Taylor R. B. (1987). Gravel barriers, headlands and lagoons: an evolutionary model. In: N.C. Krauss (Ed.), Coastal sediments 87, (pp. 1776–1792). American Society of Civil Engineers.
Cellone, F., Carol, E., and Tosi, L. (2016). Coastal erosion and loss of wetlands in the middle Río de la Plata estuary (Argentina). Applied Geography 76, 37–48. https://doi.org/10.1016/j.apgeog.2016.09.014
Church, J. A. and White, N. J. (2006). A 20th century acceleration in global sea-level rise. Geophysical Research Letters, 33(1), L01602. https://doi.org/10.1029/2005GL024826
Collins, M., M. Sutherland, L. Bouwer, S.-M. Cheong, T. Frölicher, H. Jacot Des Combes, M. Koll, Roxy, I. Losada, K. McInnes, B. Ratter, E. Rivera-Arriaga, R. D. Susanto, D. Swingedouw, and L. Tibig (2019). Extremes, abrupt changes and managing risk. In: Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, and N. M. Weyer (Eds.), Special Report on the ocean and cryosphere in a changing climate (pp. 589–655). Cambridge University Press. https://doi.org/10.1017/9781009157964.008
Cortizo, L. C. and Isla, F. I. (2007). Evolución y dinámica de la barrera medanosa de San Cayetano y Tres Arroyos, Buenos Aires. Revista de la Asociación Geológica Argentina, 62(1), 3–12.
Cronin, T. J. (2012). Rapid sea-level rise. Quaternary Science Reviews, 56, 11–30. https://doi.org/10.1016/j.quascirev.2012.08.021
Davidson-Arnott, R. G. D. (2005). A conceptual model of the effects of sea level rise on sandy coasts. Journal of Coastal Research, 21(6), 1166–1172. https://doi.org/10.2112/03-0051.1
Dunn, F. E., Darby, S. E., Nichols, R. J., Cohen, S., Zar, C., and Fekete, B. M., (2019). Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environmental Research Letters 14, 084034. https://doi.org/10.1088/1748-9326/ab304e
Ezer, T., Haigh, I. D., and Woodworth, P. L. (2016). Nonlinear sea-level trends and long-term variability on western European coasts. Journal of Coastal Research, 32(4), 744–755. https://doi.org/10.2112/JCOASTRES-D-15-00165.1
Fiore, M., D’Onofrio, E. E., Pousa, J. ., Schnack, E. J., and Bértola, G. R. (2009). Storm surge and coastal impacts at Mar del Plata, Argentina. Continental Shelf Research, 29(14), 1643–1649. https://doi.org/10.1016/j.csr.2009.05.004
Fitzgerald, D. M. and Hughes, Z. (2019). Marsh processes and their response to climate change and sea-level rise. Annual Review of Earth Planetary Sciences, 47, 481–517. https://doi.org/10.1146/annurev-earth-082517-010255
Fletcher, C. H. (1992). Sea-level trends and physical consequences: application to the U. S. shore. Earth Science Reviews, 33(2), 73–109. https://doi.org/10.1016/0012-8252(92)90021-K
Forbes, D. L., Taylor, R. B., Orford, J. D., Carter, R. W. G., and Shaw, J. (1991). Gravel-barrier migration and overstepping. Marine Geology, 97(3–4), 305–313. https://doi.org/10.1016/0025-3227(91)90122-K
Forbes, D. L., Orford, J. D., Carter, R. W. G., Shaw, J., and Jennings, S. C. (1995). Morphodynamic evolution, self-organisation, and instability of coarse-clastic barriers on paraglacial coasts. Marine Geology, 126(1–4), 63–85. https://doi.org/10.1016/0025-3227(95)00066-8
Gallo, M. (2023). Dinámica morfosedimentaria del frente deltaico del río Paraná, provincia de Buenos Aires [Unpublished PhD Thesis]. Universidad de Buenos Aires, 263 pp.
Gehrels, W. R. and Woodworth, P. L. (2013). When did modern rates of sea-level rise start? Global and Planetary Change, 100, 263–277. https://doi.org/10.1016/j.gloplacha.2012.10.020
Graham, A. G. C., Wåhlin, A., Hogan, K. A., Nitsche, F. O., Heywood, K. J., Totten, R. L., Smith, J. A., Hillenbrand, C. D., Simkins, L. M., Anderson, J. B., Wellner, J. S., and Larter, R. F. (2022). Rapid retreat of Thwaites Glacier in the pre-satellite era. Nature Geoscience, 15, 706–713. https://doi.org/10.1038/s41561-022-01019-9
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3, 816–821. https://doi.org/10.1038/nclimate1911
Houston, J. R. and Dean, R.G. (2011). Sea-level acceleration based on U.S. tide gauges and extensions of previous global-gauge analyses. Journal of Coastal Research, 27(3), 409–417. https://doi.org/10.2112/JCOASTRES-D-10-00157.1
Hummel, M. A., Berry, M. S., and Stacey, M. T. (2018). Sea level rise impacts on wastewater treatment systems along the U.S. coasts. Earth’ s Future, 6, 622–633. https://doi.org/10.1002/2017EF000805
Isla, F. I. (1992). Overpassing and armouring phenomena on gravel beaches. Marine Geology, 110(3–4), 369–376. https://doi.org/10.1016/0025-3227(93)90094-C
Isla, F. I. (2018). ENSO-triggered floods in South America: correlation between maximum monthly discharges during strong events. Hydrology and Earth System Sciences, Discussions. https://doi.org/10.5194/hess-2018-107
Isla, F. I. and Bujalesky, G. G. (1995). Tendencias evolutivas y disponibilidad de sedimento en la interpretación de formas costeras: Casos de estudio de la costa argentina. Revista Asociación Argentina de Sedimentología, 2(1–2), 75–89.
Isla, F. I. and Cortizo, L. C. (2023). Coastal erosion in Argentina: the retreating rates of southern South America. Journal of South American Earth Sciences, 126, 1043442. https://doi.org/10.1016/j.jsames.2023.104342
Isla, F.I. and Gaido, E.S. (2001). Evolución geológica de la Laguna Mar Chiquita. In: O. Iribarne (Ed.), Reserva de Biósfera Mar Chiquita. Características físicas, biológicas y ecológicas, (pp. 19–30). Fundación Antorchas, ORCYT, UNMDP.
Isla, F. I. and Garzo, P. (2023). Playas y pluviales: los impactos de la impermeabilización y el drenaje de barreras medanosas. Revista MAR, Material de Arquitectura, 1, 72–98.
Isla, F. I. and Isla, M. F, (2024). The fate of the Patagonian rivers: fluvial captures and climate trends. Acta Geologica Lilloana 35(2), 167–185. https://doi.org/10.30550/j.agl/1916
Isla, F. I. and Lamarchina, S. (2023). Beach-gravel armouring response to sea level rise: Case studies from Patagonia and Tierra del Fuego. Journal of South American Earth Sciences, 128, 104454. https://doi.org/10.1016/j.jsames.2023.104454
Isla, F. I., Iantanos N., and Estrada, E. (2002). Playas reflectivas y disipativas macromareales del Golfo San Jorge. Revista de la Asociación Argentina de Sedimentología, 9(2), 155–164.
Isla, F. I., Espinosa, M., Gerpe, M., Iantanos, N., Menone, M., Miglioranza, K. S. B., Ondarza, P., Gonzalez, M., Bertola, G., Aizpun, J.E., and Moreno, V., J. (2010). Patagonian salt marshes: the soil effects on the NDVI response. Thalassas, 26(1), 23–31.
Isla, F. I., Cortizo, L.C., Merlotto, A., Bertola, G., Pontrelli Albisetti, M., and Finocchietti, C. (2018). Erosion in Buenos Aires province: Coastal-management policy revisited. Ocean and Coastal Management, 156, 107-116. https://doi.org/10.1016/j.ocecoaman.2017.09.008
Isla. F., Isla, M., Bertola, G., Bedmar, J., Cortizo, L. C., and Maenza, R. (2021). Tatón dune field: wind selection across the Southamerican Arid Diagonal, Puna Argentina. Quater, & Environmental Geosciences, 12(2), 19–29. http://dx.doi.org/10.5380/abequa.v12i2.65221
Isla, F. I., Bertola, G., Fernández, J. M., Bedmar, J. M., Toffani, M., and Garzo, P. (2023). Beach-morphodynamic changes conditioned by the Holocene sea-level fluctuation: Mesotidal beaches of Northern Patagonia. Acta Geologica Lilloana, 34(2), 111–128. http://dx.doi.org/10.30550/j.agl/2023.34.2/1830
Isla, F. I., Sánchez Caro, L., Carretero, S., and Rodrígues Capítulo. L. (2024). Hidrogeología de las barreras medanosas de la Provincia de Buenos Aires: vulnerabilidad al aumento del nivel del mar. Revista de la Asociación Geológica Argentina, 82(1), 209–225.
Khojasteh, D., Glamore, W., Heimhuber, V., and Felder, S. (2021). Sea level rise impacts on estuarine dynamics: A review. Science of the Total Environment, 780, 146470. https://doi.org/10.1016/j.scitotenv.2021.146470
Kruse, E., Sarandon, R. and Gáspari, F. (2014). Impacto del cambio climático en el Gran La Plata. Editorial de la Universidad Nacional de la plata. ISBN: 978-987-1985-42-5
Lasta, C., González, E., Verón, E., Ortale, M., and Camiolo, M. (2019). Evaluación de la vulnerabilidad a la erosión del Frente Costero de la provincia de Buenos Aires (Informe Anual General). Organismo Provincial para el Desarrollo Sostenible (OPDS), Provincia de Buenos Aires.
Lanfredi. N. W., Balestrini, C. F., Mazio, C. A., and Schmidt, S. A. (1987). Tidal sandbanks in Mar Chiquita coastal lagoon, Argentina. Journal of Coastal Research ,3(4), 515–520.
uz Clara, M., Simionato, C. G., D’Onofrio, E., and Moreira, D. (2015). Future sea level rise and changes on tides in the Patagonian continental shelf. Journal of Coastal Research, 31(3), 519–535. https://doi.org/10.2112/JCOASTRES-D-13-00127.1
Marcomini, S., López, R., Picca, P.; Madanes, N., and Bertolín, L. (2017). Natural coastal dune-field landforms, plant communities, and human intervention along Buenos Aires northern aeolian barrier. Journal of Coastal Research, 33(5), 1051–1064. https://doi.org/10.2112/JCOASTRES-D-15-00219.1
Marcomini, S., Tripaldi, A., Leal, P., López, R., Alonso, M. S., Ciccioli, P. L., Quesada, A., and Bunicontro, P. (2018). Morfodinámica y sedimentación de un sector del frente deltaico del Paraná entre los años 1933 y 2016, Provincia de Buenos Aires, Argentina. Revista de la Asociación Geológica Argentina, 75(1), 1–16.
Magrin, G. O., Marengo, J. A., Boulanger, J. P., Buckeridge, M. S., Castellanos, E., Poveda, G., Scarano, S. J., and Vicuña, S. (2014). Central and South America. In: V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach (Eds.). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1499–1566). Cambridge University Press.
Melet, A., Meyssignac, B., Almar, R., and Le Cozannet, G. (2019 . eply to ‘Waves do not contribute to global sea-level rise’. Nature Climate Change, 9(1), 3–3. https://doi.org/10.1038/s41558-018-0378-4
Melet, A., Almar, R., Hemer, M., Le Cozannet, G., Meyssignac, B., and Ruggiero, P. (2020). Contribution of wave setup to projected coastal sea level changes. Journal of Geophysical Research: Oceans, 125(8). https://doi.org/10.1029/2020JC016078
Minetti, J. L. and Vargas, W.M. (1997). Trends and jumps in the annual precipitation in South America, south of 15°S. Atmósfera 11(4), 205–221.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. K. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756. https://doi.org/10.1038/nature08823
O’Brien, M. P. 1969 , Equilibrium flow areas of inlets in sandy coasts. Journal of Waterways and Harbors Division, 95(1), 43–52. https://doi.org/10.1061/JWHEAU.0000622
Oppenheimer, M., Glavovic , B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z. (2019). Sea level rise and implications for low-lying islands, coasts and communities. In: Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (pp. 321–445). Cambridge University Press.
Orford, J. D., Carter, R. W. G., McKenna, J., and Jennings, S. C. (1995a). The relationship between the rate of mesoscale sea-level rise and the rate of retreat of swash-aligned gravel-dominated barriers. Marine Geology, 124(1–4), 177–186. https://doi.org/10.1016/0025-3227(95)00039-2
Orford, J. D., Carter, R. W. G., Jennings, S. C., and Hinton, A. C. (1995b). Processes and timescales by which a coastal gravel- dominated barrier responds geomorphologically to sea level rise: Story Head barrier, Nova Scotia. Earth Surface Processes and Landforms, 20(1), 21–37. https://doi.org/10.1002/esp.3290200104
Pan, L., Powell, E. M., Latychev, K., Mitrovica, J. X., Creveling, J. R., Gomez, N., Hoggard, M. J., and Clark, P. U. (2021). Rapid postglacial rebound amplifies global sea level rise following West Antarctic Ice Sheet collapse. Science Advances, 7,(18). https://doi.org/10.1126/sciadv.abf7787
Paredes, J. M. (2019). Comodoro Rivadavia y la catástrofe de 2017. Visiones múltiples para una ciudad en riesgo. Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia. ISBN 978-950-763-123-8
Passeri, D L., Hagen, S. C., Medeiros, S. C., Bilskie, M. V., Alizad, K., and Wang, D. J. E, F. (2015). The dynamic effects of sea level rise on low-gradient coastal landscapes: a review. Earth’s Future, 3, 159–181. https://doi.org/10.1002/2015EF000298
Perillo, G. M. E., Pérez, D. E., Piccolo, C. M., Palma, E. D., and Cuadrado, D. G. (2005). Geomorphologic and physical characteristics of a human impacted estuary: Quequén Grande River Estuary, Argentina. Estuarine Coastal and Shelf Science, 62(1–2), 301–312. https://doi.org/10.1016/j.ecss.2004.09.018
Pezza, A. B. and Simmonds, I. (2005). The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change. Geophysical Research Letters, 32. https://doi.org/10.1029/2005GL023390
Piecuch, C. G. (2023). River effects on sea-level rise in the Río de la Plata estuary during the past century. Ocean Science, 19(1), 57–75. https://doi.org/10.5194/os-19-57-2023
Pronk, J. (2002). The Amsterdam Declaration on Global Change. In: W. Steffen, J. Jäger, D. J. Carson, C. Bradshaw (Eds.). Challenges of a Changing Earth. Global Change. The IGBP Series, Springer. https://doi.org/10.1007/978-3-642-19016-2_40
Quesada, A. (2019). Geomorfología ambiental de la Primera Sección del delta del río Paraná: erosión (natural y antrópica) de los canales distributarios y manejo de sus márgenes [Unpublished PhD Thesis]. Universidad de Buenos Aires, 232 pp.
Rodrígues Capítulo, L. (2015). Evaluación geohidrológica en la región costera oriental de la provincia de Buenos Aires. Caso de estudio Pinamar [Unpublished PhD Thesis]. Universidad Nacional de La Plata.
Rogers, J. S., Maneta, M. M., Sain, S. R., Madaus, L. E., and Hacker, J. P. (2025). The role of climate and population change in global flood exposure and vulnerability. Nature Communications, 16,1287. https://doi.org/10.1038/s41467-025-56654-8
Rosati, J. D., Dean, R. G., and Walton, T. L., 2013. The modified Bruun Rule extended for landward transport. Marine Geology, 340(1), 71–81. https://doi.org/10.1016/j.margeo.2013.04.018
Roy, P. S., Cowell, P. J., Ferland, M. A., and Thorn, B.G. (1995). Wave dominated coasts. In: R.W.G. Carter and CD. Woodroffe (Eds.), Coastal Evolution. Cambridge University Press.
Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke, D., McOwen, C. J., Pickering, M. D., Reef, R., Vafeidis, A. T., Hinkel, J., Nicholls, R. J., and Brown, S. (2018). Future response of global coastal wetlands to sea-level rise. Nature, 561, 231–234. https://doi.org/10.1038/s41586-018-0476-5
Spalletti, L. A. and Isla, F. I., 2003. Evolución del delta del ío Colorado “Colú euvú” , Provincia de Buenos Aires, República Argentina. Revista de la Asociación Argentina de Sedimentología, 10, 23–27.
Thompson, R. E. and Tabata, S. (1987). Steric heights trends at ocean station PAPA in the Northwest Pacific Ocean. Marine Geology 11, 103–113. https://doi.org/10.1080/15210608709379553
Wallace, D. J., Anderson, J. B., and Fernández, R. A. (2010). Transgressive ravinement versus depth of closure: a geological perspective from the upper Texas coast. Journal of Coastal Research, 26(6), 1057–1067. https://doi.org/10.2112/JCOASTRES-D-10-00034.1
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Federico Ignacio Isla

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
